МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Министерство образования и науки Удмуртской Республики

Администрация МО «Муниципальный округ Красногорский район

Удмуртской Республики

МКОУ «Дёбинская ООШ»

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДЕНО
На заседании ШМО	Зам. директора поУВР	Директор МКОУ
учителей естествознания		«Дёбинская ООШ»
—————————————————————————————————————	М.В.Бабинцева «30» 08 2023г.	—————————————————————————————————————
Протокол №5 от «28»08 2023г.		Приказ № 88/2 от «31» 08 2023г.

Рабочая программа

Курса по выбору «Решение расчетных задач по химии»

для обучающихся 9 класса

Содержание

- 1. Пояснительная записка:
 - роль задач в курсе химии;
 - цель и задачи курса;
 - планируемые результаты.
- 2. Тематическое планирование.
- 3. Учебно тематическое планирование
- 4. Литература.
- 5. Приложение 1
 - обзор задач, предлагаемых учащимся для решения;

Пояснительная записка

Роль задач в курсе химии.

Химическая учебная задача — это модель проблемной ситуации, решение которой требует от учащихся мыслительных и практических действий на основе знания законов, теории и методов химии, направленных на закрепление, расширение знаний и развитие химического мышления.

Включение задач в учебный процесс даёт возможность:

- формировать УУД;
- развивать творческое мышление, интеллект, воображение;
- осуществлять связь обучения с жизнью;
- понять, что химические знания являются неотъемлемой частью мировоззрения современного человека и необходимы для понимания процессов, происходящих в природе и обществе.

При решении задач происходит уточнение и закрепление химических понятий о веществах и процессах, вырабатываются умения и навыки по использованию имеющихся знаний. Побуждая учеников повторять изученный материал, углублять и осмысливать его, химические задачи формируют систему конкретных представлений. Задачи, включающие определенные ситуации, становятся стимулом самостоятельной работы учащихся над учебным материалом.

Решение задач способствует воспитанию целеустремленности, развитию чувства ответственности, упорства и настойчивости в достижении цели. В процессе решения используется межпредметная информация, что формирует понятие о единстве природы.

В ходе решения задач идет сложная мыслительная деятельность, которая определяет как содержательную сторону мышления (знания),

так и действенную (операции действия). Теснейшее взаимодействие знаний и действий способствует формированию приёмов мышления: суждений, умозаключений, доказательств.

При решении химических задач учащиеся приобретают знания, которые можно условно разделить на два рода: знания, приобретенные при разборе текста задачи, и знания, без привлечения которых процесс решения невозможен (определения, понятия, основные законы и теории, физические и химические свойства веществ, их формулы, химические процессы и т.д.).

Важна роль задач в организации поисковых, исследовательских ситуаций при изучении химии.

Задачи являются объективным средством контроля знаний, умений и навыков учащихся.

На изучение курса отводится 17 часов

Курс базируется на знаниях, получаемых обучающимися при изучении химии в основной школе, и не требует знания теоретических вопросов, выходящих за рамки школьной программы. В то же время, для успешной реализации курса, необходимо, чтобы ученик владел важнейшими вычислительными навыками, алгоритмами решения типовых химических задач; умел применять при решении Знания, полученные в процессе физические и химические законы. изучения данного элективного курса, впоследствии могут быть использованы при поступлении в медицинские, с/х вузы. Форма контроля: отчёт по решенным задачам.

Цель курса: Способствовать формированию необходимых умений и навыков для решения расчетных задач по курсу неорганической химии; развитию познавательной активности и самостоятельности.

Задачи курса

воспитательные:

• способствовать воспитанию социально-успешной личности;

• создать условия для формирования у учащихся коммуникативных способностей в процессе совместной работы.

развивающие:

- создать условия для развития логического мышления учащихся;
- продолжить формирование умений анализировать, сравнивать, обобщать, устанавливать причинно-следственные связи при решении задач;

обучающие:

- создать условия для усвоения выбранного предмета на повышенном уровне с ориентацией на подготовку к сдаче экзамена в форме ГИА;
- исследовать и анализировать алгоритмы решения типовых задач; находить способы решения комбинированных задач;
- способствовать формированию навыков решения задач различных типов.

Планируемые результаты:

Личностные - принятие социальной роли обучающегося, развитие мотивов учебной деятельности и формирование личностного смысла обучения; социальных и межличностных отношений

Метапредметные.

коммуникативные:

- развивать умение точно и грамотно выражать свои мысли, <u>отстаивать</u> свою точку зрения в процессе дискуссии;
- учиться критичноотноситься к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
- управлять своим поведением (контроль, саморегуляция, оценка своего действия).

регулятивные:

> планировать решение учебной задачи;

- **у** корректировать деятельность: вносить изменения в процесс с учетом возникших трудностей и ошибок, намечать способы их устранения;
- > прогнозировать результат и уровень усвоения;
- удерживать цель деятельности до получения её результата;
- определять последовательность промежуточных действий с учетом конечного результата, составлять план;

познавательные:

- осуществлять выбор наиболее эффективных способов решения задач;
- произвольно и осознанно владеть общим приемом решения задач;
- > ориентироваться на разнообразие способов решения задач;
- > уметь устанавливать причинно-следственные связи.

.*Предметные* – ученик должен знать:

- > основные формулы и законы, по которым проводятся расчеты;
- > стандартные алгоритмы решения задач;
- > способы решения задач различных типов.

уметь:

- решать задачи различных типов, в том числе, повышенной сложности;
- > четко представлять сущность описанных в задаче процессов;
- видеть взаимосвязь происходящих химических превращений и изменений численных параметров системы, описанной в задаче;
- > владеть химической терминологией;
- пользоваться справочной литературой по химии для выбора количественных величин, необходимых для решения задач;
- самостоятельно составлять типовые химические задачи и объяснять их решение.

Оценка деятельности учащихся

- ✓ Оценка деятельности учащихся проводится путем установления степени выполнения учащимися задач, поставленных перед ними в процессе обучения.
- ✓ Оценка результатов учебной работы дается в виде содержательных оценочных суждений, что в значительной степени способствует формированию рефлексии, так как рефлексия (умение оценить самого себя) как в жизнедеятельности, так и в учебной деятельности показатель интеллектуального и личностного развития.
- ✓ Объектом оценивания может быть не только результат, но и процесс деятельности, оценка может использоваться как вознаграждение за трудолюбие, прилежание, продвижение.
- ✓ Основанием оценки может быть критерий относительной успешности.

Тематическое планирование

1. Расчёты с помощью химических формул -- 2 часа

2. Учёт примесей, содержащихся в исходных веществах - 2 часа

3. Реагенты взяты в избытке - 3 часа

4. Процессы, протекающие в растворах - 5 часов

5. Смеси веществ - 2 часа

6. Основы химической технологии - 2 часа

7. Зачётное занятие - 1 час

Учебно-тематическое планирование

№	Разделы и темы занятий		Количество часов		
п/п			теория	практика	
	I. Расчеты с помощью химических	2	0.5	1.5	
	формул				
1.	Основные величины, используемые при		0.25	0.75	
	количественных расчетах в курсе химии.				
	Вычисление массовой доли химического элемента				
	в сложном веществе.				
2.	Нахождение массы элемента по известной массе		0.25	0.75	
	сложного вещества.		0.23		
	II. Учет примесей, содержащихся в	2	0.5	1.5	
	исходных веществах				
3.	Алгоритм решения задач по химическим				
	уравнениям с учетом примесей, содержащихся в		0,5	0,5	
	исходных веществах.		,	,	
4.	Вычисления по химическим уравнениям: учет				
	примесей, содержащихся в исходных веществах.		_	1,0	
				,	
	III. Реагенты взяты в избытке	3	0,5	2,5	
5.	Алгоритм решения задач по химическим		0,5	0,5	
	уравнениям при условии, что один из реагентов дан		0,0	,,,	
	в избытке.				
6.	Вычисления по уравнениям химических реакций	_		1	
•	при условии, что один из реагентов дан в избытке.			_	
	The foregreen, are examine from entre Z down z meezine.				
7.	Решения задач на избыток или недостаток одного		-	1	
	из реагентов.				
	IV.Процессы, протекающие в растворах.	5	1	4	
0	A		0.25	0.75	
8.	Алгоритм решения задач по химическим		0,25	0,75	
	уравнениям с участием веществ, находящихся в растворах.				
9.	растворах.			1.0	
7.	Вычисление массовой доли растворенного		-	1,0	
10.	вещества в растворе.				
10.	Вычисление количества вещества, массы или		0,25	0,75	
	объёма вещества по количеству вещества, массе		0,23	0,73	
	или объёму одного из реагентов или продуктов				
11	реакции.		0,25	0,75	
11	Вычисление массы растворенного вещества,		0,23	0,73	
	Diff monetine macon paerbopennoro beneerba,				

12	содержащегося в определённой массе раствора с известной массовой долей. Вычисления, связанные с разбавлением растворов		0,25	0,75
	IV. Смеси веществ	2	0,5	1,5
13.	Алгоритм решения задач. Решение задач на определение количественного и качественного состава смеси веществ.		0,5	0.5
14.	Вычисления по химическим уравнениям на			
	определение количественного состава смеси веществ		-	1,0
	V. Основы химической технологии	2	0,5	1,5
15.	Расчеты по термохимическим уравнениям.		0,25	0,75
16.	Вычисление массы продукта реакции. Если		0,25	0,75
	известна массовая доля выхода продукта реакции			
	по сравнению с теоретически возможным			
17	Зачётное занятие	1		1

Учебно-методическое обеспечение

- 1. Г.П. Хомченко, И.Г. ХомченкоСборник задач по химии. Москва «Новая волна»,2005 г
- 2. Н.Е.Кузьменко, В.В.Еремин2500 задач по химии. Москва «Экзамен»,2006
- 3. Я.Л. Гольдфарб, Ю.В.ХодаковСборник задач и упражнений по химии. Москва «Просвещение», 1998

Обзор задач, предлагаемых учащимся для решения:

- 1) На нейтрализацию 40% раствора серной кислоты затратили 5мл 40% раствора гидроксида калия ($\rho = 1,4\Gamma/\text{мл}$). Вычислите массу раствора серной кислоты.
- 2) Какой объём 20% раствора азотной кислоты ($\rho = 1,15$ г/мл) необходим для растворения 250 г известняка, содержащего 20% примесей?
- 3) К 100 мл 10,6% раствора хлорида кальция (ρ=1,05г/мл) добавили 30мл 38,55% раствора карбоната натрия (ρ =1,1г/мл). Вычислите массу образовавшегося осадка.
- 4) Оксид фосфора (V) массой 1,42г растворили в 60г 8,2% ортофосфорной кислоты и полученный раствор прокипятили. Какая соль, и в каком количестве образуется, если к полученному раствору добавить 3,92г гидроксида калия?
- 5) К 400мл раствора серной кислоты, с массовой долей H₂S0₄20% (ρ= 1,14г/мл) добавили 300мл раствора гидроксида калия с массовой долей КОН 18% (ρ =1,11г/мл). Какова среда полученного раствора? Вычислите массовую долю соли в образовавшемся растворе.
- 6) 1,44г металла растворили в 20мл 20% раствора соляной кислоты (ρ = 1,95г/мл) при этом образуется соль, в которой металл двухвалентен. Весь образовавшийся водород прореагировал с 3,2 оксида металлов с валентностью равной III. Определите оба металла.
- 7) Сплав магния и алюминия массой 5г обработали раствором гидроксида натрия; при этом выделилось 3,36л газа (н.у.). Определите массовую долю магния (в %) в сплаве.
- 8) При взаимодействии 8г смеси магния и железа с соляной кислотой выделилось 4,48л водорода (н.у.). Сколько граммов железа и магния содержится в смеси?

- 9) Для реакции 3,9 г смеси алюминия и магния с соляной кислотой потребовалось 139,5 мл 10% -ного раствора соляной кислоты ($\rho = 1,047$ г/мл). Определить массовую долю (в %) алюминия в смеси.
- 10) Путем сжигания серы получено 32г оксида серы (IV), при этом выделилось 146,3 КДж теплоты. Составьте термохимическое уравнение этой реакции.
- 11) Вычислите объём аммиака (н.у.) который образуется при взаимодействии 56л азота с таким же объёмом водорода, если выход продукта реакции составил 80% от теоретически возможного.
- 12) Три газа перемешали в замкнутом объеме и взорвали. Какова массовая доля (в %) образовавшейся при этом кислоты, если первый газ был получен действием на 42,9г цинка избытком соляной кислоты, второй газ термическим разложением 51 г нитрата натрия, а третий газ действием на 5,22 г оксида марганца(IV) избытка соляной кислоты.